
Supporting Plan Authoring and Analysis
Jihie Kim and Jim Blythe

University of Southern California/Information Sciences Institute
Marina del Rey, CA 90292 USA

+1 310 448 8769

{jihie,blythe}@isi.edu

ABSTRACT
Interactive tools to help users author plans or processes are
essential in a variety of domains. KANAL helps users author
sound plans by simulating them, checking for a variety of errors
and presenting the results in an accessible format that allows the
user to see an overview of the plan steps or timelines of objects in
the plan. From our experience in two domains, users tend to
interleave plan authoring and plan checking while extending
background knowledge of actions. This has led us to refine
KANAL to provide a high-level overview of plans and integrate a
tool for refining the background knowledge about actions used to
check plans. We report on these lessons learned and new
directions in KANAL.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentations]: User
Interfaces – User interface management systems

General Terms
Verification, Human Factors

Keywords
knowledge acquisition, plan analysis, knowledge bases, plan
authoring, process models.

1. INTRODUCTION
End user programming is a key research area in developing
intelligent user interfaces. There has been a wide range of
approaches taken, including programming by demonstration [8]
and learning apprentices[16]. These systems make use of
observed examples and generalize them into a task representation
that can be used in the future. While these approaches work well
for simple tasks, as the complexity of the knowledge to be
captured increases, direct knowledge authoring tools seem more
useful.
In the past we have built various knowledge editors and tools to
enable end users to specify new knowledge directly [2,12,3].

Recently, we have been investigating approaches to helping end
users author and analyze process models and plans, including
process models in biology and plans in military applications.
Often process models are quite complex, as shown in Figure 1.
The figure illustrates a part of a process model for a virus
invading a cell, entered by a graphical knowledge entry tool [6].
These process models can have many steps and objects that are
connected by a variety of links. For example, there are different
types of connections among the steps, including decomposition
links between steps and substeps and ordering constraints.
Objects are connected to the steps based on the roles they play.
Helping end-users author and check such complex plans and
process models remains a challenging area.

Figure 1: Example process model: a virus invading a cell.

Existing approaches for supporting plan authoring include
graphical tools that let users layout plans by drawing steps and
connections between the steps. The help provided by these tools
is limited because there is no underlying semantics that can
support the analysis. There are plan analysis approaches that
defined some desirable properties of plans and some use critics
that detect problems [10]. Also there are tools that capture
planning knowledge interactively [5,17] but they are not designed
to exploit background knowledge and ontologies, which we
believe is crucial technology to providing strong guidance needed
by end users.
KANAL (Knowledge ANALysis) is a tool that checks process
models specified by a user, reports possible errors and provides
specific suggestions to the users about how to fix those errors
[13]. It helps users build or modify process models by detecting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IUI’03, January 12-15, Miami, Florida, USA.
Copyright 2003 ACM 1-58113-586-6/03/0001…$5.00.

To appear in the proceedings of the Intelligent User Interfaces Conference (IUI 2003)

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
Supporting Plan Authoring and Analysis

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California,Information Sciences Institute ,4676 Admiralty
Way,Marina del Rey,CA,90292

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

invalid statements and pointing out what additional knowledge
needs to be acquired and what existing knowledge needs to be
modified. These are done by analyzing interdependencies
between different pieces of knowledge used in describing the
process model and also relating them to the existing knowledge
and ontologies. KANAL is currently used within an end-to-end
knowledge acquisition (KA) system called SHAKEN [7]. Users
can invoke KANAL whenever they want to check their
definitions of process models. SHAKEN has general background
knowledge on actions that KANAL makes use of in analyzing
process models. For example, conditions and effects of a general
Move concept can be used in analyzing any Move steps in a
process model.
KANAL has been used by various end users including biologists
who built and tested models of complex molecular biology
processes and army officers who used KANAL to critique their
plans, i.e., courses of action (COAs). We found that its analysis
report was very useful for checking the plans that were entered by
users and often suggested useful ways of improving the plans.
However we also found that sometimes users wish to extend the
background knowledge that is used to produce the analysis report.
For example, they may want to define various special cases of
actions that are relevant for different situations, or exceptions that
were not specifically addressed in the general background
knowledge. In general, knowledge bases are never complete and it
is important to provide a capability of adapting the knowledge
base for varying needs. To support this capability we have
extended our authoring environment so that the user can choose to
enter special cases of critiquing knowledge as well as to change
the description of the process itself in order to improve the
resulting report. In this extension, instead of describing different
cases in a single definition, we make use of the inheritance
mechanism in the given knowledge representation system to
represent each special case as a separate entity. We argue below
that this approach provides a more a natural view of special cases
for end users and has efficiency advantages.
In this paper, we report our experience in helping end users author
and analyze process models in two different domains and present
how we improved our interfaces based on the experience. We
begin with a brief overview of KANAL through an example of
the checks it performs and then we describe how the KANAL
report was used by end users during a sequence of two
evaluations. Next we describe the feedback we have received
from end users and how we improved the KANAL interface based
on the feedback. Then we describe an extension that allows users
to interleave plan authoring and plan checking by creating special
cases of actions in order to improve critique results. Finally, we
discuss our future work in developing additional support for plan
building and checking.

2. KANAL: Helping users analyze authored
plans
The current implementation of KANAL is built on the KM
knowledge representation and reasoning system [6]. KM
provides a function that can execute a step in a given situation and
create a new situation based on the effects (add/delete list) of the
given step. KANAL uses this function to simulate the given
process model and analyzes interdependencies between the

conditions and effects of the steps, such as that the required
conditions for each step are met when the step is supposed to take
place, and that the expected effects of the overall process are in
fact obtained. KANAL also checks how different steps are
related to each other, including their temporal ordering and causal
relationships. In the process, KANAL reports possible errors in
the models, and generates specific suggestions to the user about
how to fix those errors.

Figure 2: A missing role assignment (missing “destination” link
between Move-Out-Of and Cytoplasm) is detected through a
failed precondition of the following step.

The highlighted box in Figure 1 shows an example mistake while
building a model of a virus invading a cell. Currently, the
destination of the Move-Out-Of step is missing. The editor
prevents users entering invalid links based on the domain and the
range of the roles, but such missing information needs more
thorough analysis of the dependencies between the steps. KANAL
notices this problem when it checks the precondition of the next
step (Move-Into), i.e., the Viral-Nucleic-Acid needs to be located
at the Cytoplasm in order to move from the Cytoplasm (the
origin). The precondition fails because the location of the Viral-
Nucleic-Acid is currently unknown due to the missing link. If the
Move-Out-Of step had such a link, it would have made the
location of the Viral-Nucleic-Acid as the Cytoplasm, as shown in
Figure 2. For this type of problem, KANAL’s proposed fixes
include 1) adding a new move step to make the location of the
Viral-Nucleic-Acid be the Cytoplasm 2) modifying a previous
Move (Move-Out-Of) to make the destination be the Cytoplasm
or 3) modifying the current step so that the condition no longer
needs to be satisfied. In fact, the second suggestion directly points
to the user’s mistake: missing destination link between Move-
Out-Of and Eucaryotic-Cytoplasm.
Besides failed preconditions and missing links, KANAL can
check unnecessary links, undoable steps, useless steps, enabling
relationships among steps, unachieved expected effects,
disjunctive branches, loops, etc. The details are available in [13].
Table 1 shows the number of times KANAL was used during a
sequence of two DARPA Rapid Knowledge Formation (RKF)
program evaluations. Four biologists participated in the first
evaluation and three of them participated again in the second,
smaller scale evaluation. In both evaluations, the biologists
created models of processes described in a cell biology textbook.
The quality of the resulting knowledge base was assessed with a
set of textbook type questions.

 Summer 2001 January 2002

Total number of concepts
built

449 157

KANAL invocations 144 71

Invocations per concept 0.32 0.45

Table1: Uses of KANAL

The first row shows the number of concepts built by the biologists
and the second row shows the number of KANAL invocations
during the evaluations. Between the two evaluations, it seemed
that as they become more familiar with the tool, the biologists
used KANAL more frequently (from 32% to 45% of the
concepts). Note that the concepts created by the users through
SHAKEN included very simple factual definitions that didn’t
need to be checked by KANAL. For example there were many
simple subclass definitions, such as a definition of Cap as a
subclass of DNA-Sequence.

Error/warning Type Summer 2001 January 2002

 Total # ratio Total # ratio

Missing first-event,
subevent, next-event

37 0.26 8 0.11

Unreached events 55 0.38 16 0.23

Unnecessary ordering 105 0.73 52 0.73

Failed conditions 133 0.92 111 1.56

Failed execution of step 30 0.21 24 0.34

Effectless step 139 0.97 6 0.08

Failed expected effect 7 0.05 10 0.14

Loop 1 0.01 0 0

 Table2: Errors and warnings reported
(ratio: number of errors or notes / number of KANAL
invocations)

Table 2 shows the number of errors and warnings reported to the
users during the evaluations. As shown in the table, KANAL was
used in performing various types of checks, including missing
links, failed conditions, failed executions, etc. The changes in the
ratios between the two evaluations are related to multiple different
factors. For example, there were fewer warnings on simple errors
like missing event links (first-event, subevent, and next event
links) and unreached events. It seems that as the users become
more experienced in building process models, they tend to make
fewer such mistakes. However, there were some other changes
between the two evaluations. For example, SHAKEN’s
background knowledge has been improved over time and this
improvement affected the KANAL reports as well. As shown in

the table, KANAL detected more failed conditions per invocation
in the second evaluation because there were more action
conditions defined in the background ontology which KANAL
can make use of to perform more thorough checks. On the other
hand, there was a significant reduction in the number of effectless
steps as there were more effects defined for each action, which
reduces chances that a user may define a step that doesn’t produce
any effect.
In summary, end users were able to use KANAL to check their
process models, and KANAL has reported various problems in
their models. During the evaluations, we have received detailed
feedback on our interfaces through questionnaires and interviews
as well as built-in feedback functions. The following two sections
describe what we learned from the users and the improvement we
have made based on them.

3. IMPROVING THE PLAN ANALYSIS
REPORT

From the interactions with the users, we learned some important
ways of making the plan analysis report more useful. In this
section we summarize what we have learned from our experience
and the improvements we have made. We believe that these
results may be useful for other plan editing and analysis tools.

• Helping users understand results from complex analysis:
Figure 3-(a) shows a part of the old KANAL interface that reports
warnings found from a model. The users were not able to
examine how the checks were done and why the condition was
not achieved, which made the KANAL report hard to understand.
Many knowledge-based systems suffer similar problems in
presenting problem solving results and simply showing the proof
trace of the problem solver doesn’t help users much. In most
cases, the traces usually contain a lot of details users don’t
understand, although some KR languages such as EXPECT
support a more natural way of explaining problem solving traces
[2].
Figure 3-(b) shows the current KANAL interface that presents a
critique of a COA built by an Army general. It has a warning that
one of the preconditions failed, i.e., the given combat power ratio
is not high enough to perform the given task. The explanation
section in the middle shows how combat power analysis is done
by combining various pieces of information, including unit
equipment, the default combat power, remaining strength of the
units, etc., through multiple steps of computation. Users found
this addition very useful and the explanation seemed to make the
results more reliable. Currently KANAL uses templates that can
summarize the objects that participate in the analysis and the steps
involved but we are planning to investigate a more general way of
supporting this function such as a way of employing more
explainable language.

• Providing a focused report:

(a) old interface

(b) The new interface explains why the condition has failed.
Figure 3: improving KANAL interface

Many of KANAL’s checks make use of SHAKEN's background
knowledge on actions [1] which include knowledge about general
action types (such as Move) and more special knowledge that is
needed for checking domain dependent conditions and effects.
For example Move in general requires that the object being
moved shouldn’t be restrained and the objects involved should be
known but in moving military units, one should also consider if
the assigned military equipment is able to traverse the given
terrain. Although general knowledge about actions is useful in
many cases, we found that users often want to focus on only the
domain dependent checks before moving on to other checks
provided from general knowledge. This seems especially true
when the users have given little information that is needed to
perform the general checks. For example military officers don’t
explicitly state if the object is restrained or not when they build
COAs.
Currently KANAL provides a focused view by creating a
boundary between the checks that are more related to the topic
and other general checks. However a more general way of
supporting different views of the same results is desirable. For
example, the system may make use of the context and the user’s
interests to filter out unnecessary details. In Figure 3-(b), KANAL
shows only focused checks but users can see more details by
clicking “Click here to see other checks”.

• Providing a summary of state transition:

 Figure 4: summary of time varying properties

 (a) Old interface

KANAL analyzes process models by performing a simulated
execution of the steps to find what effects and changes were made
by each step. For example, in simulating military actions of a
given COA, the unit strengths will be reduced over time
depending on the engagement tasks the units were assigned, and
the unit locations will be changed based on the move steps
involved. While examining the KANAL output, users had
difficulty in understanding such transitions over time, and they
suggested that we provide a way of summarizing the changes
made to the objects through each step. Other planning tools have
also found it useful to provide a visualization of changes made to
objects during a plan [19].
The current implementation of KANAL supports this by
generating a table for each property that changes over time. For
example, for the COA domain, it generates a set of tables that
show how the unit strength changes over a sequence of tasks, how
the unit location changes, etc, as shown in Figure 4. This kind of
table seems to be more useful than the textual description of steps
KANAL used before, because the tables can show the overall
transitions more concisely than a text listing of the changes made
by each step.

• Getting user feedback:
Users may agree or disagree with the checks made by the system.
Whenever there is a disagreement it could be because 1) the plan
they built is different from what they intended, 2) the background
knowledge used to check their plans is inconsistent with their
knowledge, 3) the KANAL results are not clearly presented in the
interface, or 4) the system has other bugs. To be able to check if
the results are in fact consistent with their expectations, we have
built a way of getting user feedback by adding a couple of more
links in the interface. As shown in the step heading in Figure 3-(b)
(“Do you agree with the result for this step?”), users can indicate
if they agree or disagree and describe the reasons when they
disagree. We found that this kind of user feedback is very useful
for understanding what worked and what didn’t, and directs ways
of improving our system further.

4. THE ACTION EDITOR

The process models that are checked in KANAL are
hierarchically organized collections of actions represented in a
STRIPS-like language, similar to that used by many AI planners
[4,11]. As users gain a better understanding of a process using
KANAL’s plan checker, they may wish to change either the
process model or KANAL’s knowledge about the actions
including their preconditions and effects. In this section we
describe the Action Editor that allows users to change knowledge
about actions. This ability is crucial for users to feel that the
process checking component of KANAL is giving them useful
information and is also a challenging UI and knowledge
acquisition task.

4.1 Action special cases
As mentioned above, SHAKEN’s knowledge of actions includes
general actions and their behaviors, such as move, and domain-

dependent actions, which are specializations of the general
actions. We found that normally, users don’t want to change the
general action definitions, which are quite stable, but they often
wish to add more detail to an action to cover slightly different
behavior in special cases. If these special cases were represented
in a normal STRIPS-like syntax, each variation to an action would
need to be reflected in one set of preconditions and conditional
effects describing the general action. This can quickly lead to an
action definition that is difficult for a knowledge engineer to
understand and almost impenetrable to an end user.
Instead, we make use of inheritance in KM, the knowledge
representation language used in SHAKEN, to represent each
action special case as a separate entity. This approach has several
advantages. First, when viewing one of these special cases, the
user can see how the action will behave in this particular scenario
without reference to all the other special cases. A hierarchical
view of the action definitions can show the other special cases
that the system can reason about. Second, there is evidence [18]
that people find logical statements easier to understand when
presented in terms of a general case and its exceptions. Third, we
believe that such a representation also has efficiency advantages
for a planning system, and similar approaches have also been used
for acquiring and representing action knowledge in plan
generation systems [19,15].
In order to define a new action special case to KANAL, the user
must specify (1) the situations under which the special case
applies and (2) the behavior that is different from the normal case
of the action. This is done through a graphical editor called from
KANAL’s process checker. The editor is SHAKEN’s concept
map editor [7], modified to allow users to enter the situations that
define the special case, as we describe in the next section.

4.2 Example

Consider the ‘penetrate’ step in the scenario of a virus invading a
cell described in the first section. SHAKEN includes a generic
definition of the penetrate action in its initial library, in which
an object breaches a barrier and then moves through it. To use this
action in the cell biology domain, new preconditions and effects
need to be specified when the barrier is a cell membrane and the
object is a complex molecule or virus. For example, perhaps the
object needs to bond with the outer cell wall, and the time taken
or the probability of success may depend on the size of the
molecule or virus. Finally, the action may need to be further
refined to properly model the behavior of a particular virus when
invading a cell, for example to specify that a certain enzyme
should be present or may be suppressed in order for the process to
work, and that only the viral DNA is inserted, rather than the
whole virus.
This process of successive refinement can be captured intuitively
by two layers of specializations of the penetrate action, the first
to refine the generic action for the cell biology domain and the
second to capture the specifics of a certain virus. These layers are
illustrated in the upper box in Figure 5. Contrast this with a flat,
STRIPS-like representation of the penetrate action, shown in
schematic form in the lower box in Figure 5. The case for the
specific virus and for cells must be separately modeled in the
preconditions as well as the generic case. Conditional effects also

need to be specified and the generic effects may need to be
modified. When several different virus types are to be modeled,
and possibly several different domains, the flat action
representation can quickly become unmanageable.

Figure 5: A layered action representation based on special cases is
shown in the upper box, and part of an equivalent flat action
representation is shown in the lower box.

In KANAL, then, this situation is modeled with a special case of
the penetrate action that pertains to cell biology, with some new
or modified preconditions and effects, and a further special case
of this penetrate-cell action to capture a particular virus. The
situations under which the special case should apply are captured
by the ‘use-when’ field as shown in Figure 5, and the changes to

the action are captured in the additional-preconditions and
additional-effects. Figure 6 shows SHAKEN’s graphical editor
being used to specify the penetrate-cell special case. The agent
and object are roles of the action, and they are shown to be a virus
and cell wall respectively. These nodes are outlined in green
because the user has designated them as defining the ‘use-when’
condition of the special case. The ‘attach’ sub-event is not present
in the generic version of the action.

Figure 6: The graphical editor is used to define a special case of
the penetrate action for cell biology.

4.3 The generality of special cases

The previous example showed how using special cases can help a
user to modify action knowledge for checking processes in the
domain of cell biology. The special case mechanism was also
used in analyzing COAs, where domain experts modified
KANAL’s knowledge of military actions based on the kind of
equipment being used. Initial indications are that they found it
quite natural, as we describe below. In addition we have had
experience modeling several large planning domains in which we
believe using special cases of actions would have made the
representations easier for a domain expert to understand and
modify. We discuss two such domains.
In the first, the planning task is to recover from damage to a
bridge across a river, either by repairing the bridge or by
installing a temporary bridge across a nearby stretch of river to
allow traffic to cross. There are several different kinds of
temporary bridges that can be used, some floating and some
unfolded directly from vehicles. These bridges share many of the
same requirements for their use, for example in the preparation of
the area before emplacement, but they also have many slight
variations in requirements, such as the maximum or minimum

operator penetrate-with-all-modifications
 preconditions
 (and (near ?agent ?object)
 (or (not (virus ?agent))
 (not (cell-wall ?object))
 (attached ?agent ?object))
 ...)
 effects
 (and (breached ?object)
 (inside ?agent ?object)
 (if (and (virus ?agent)
 (cell-wall ?object))
 (not (attached ?agent ?object)))
 (if (and (lambda-virus ?agent)
 (cell-wall ?object))
 (time-required 100))
 ...)

operator penetrate
 preconditions (near ?agent ?object)
 effects (and (breached ?object)
 (inside ?agent ?object))

operator penetrate-cell extends penetrate
 use-when (and (virus ?agent)
 (cell-wall ?object))
 additional-preconditions
 (attached ?agent ?object))
 additional-effects
 (not (attached ?agent ?object))

operator lambda-virus-penetrate
 extends penetrate-cell
 use-when (lambda-virus ?agent)
 additional-effects (time-taken 100)

river width for which they can be used, and variations in their
effects. Therefore we expect that action special cases would
greatly help end users in adding or modifying operators for this
domain. We see similar patterns in a planning domain for
cleaning up after an oil spill at sea developed at SRI, where again
the many different kinds of boats and floating booms that can be
used have some broad similarities and several smaller variations
[9].

4.4 Initial evaluation

 Results September
2002

October
2002

Number of special cases created 4 13

Average number of times used 1 5.4

Average time to create a special
case

N/A 235
seconds

Number of times KANAL was run 32 42

Number of COAs tested 9 8

Total number of warnings/errors 85 345

Number of times user agreed N/A 29

Number of times user disagreed N/A 43

 Table 3: Action Editor/KANAL usage
Between June and October of 2002, a number of tests were run in
which two users entered COAs in a graphical tool, tested them
with SHAKEN and KANAL and added knowledge to allow the
tool to test the COAs including action special cases. The subjects
were domain experts with no computer science background. After
training, the only input given to the subjects was a textual
description of two COAs. Although system developers were
present to answer questions, they did not proactively give help
and their interactions were controlled.
Table 3 shows the results from the two tests (in September 2002
and October 2002). During the two sessions the subjects entered
seventeen new special cases to improve KANAL’s performance
on their COAs, taking an average of just under four minutes to
enter each special case. KANAL was able to match almost all of
the special cases to the COAs and behaved in the way the subjects
had intended. The new cases were used more often (5.4 times) in
the final test, resolving many of the errors and warnings found
during the KANAL runs. When cases were not matched, this
tended to be because the subjects had tried to use features that are
not currently supported, such as negation. The subjects were
generally positive to the approach, commenting for example that
KANAL’s behavior was ‘surprisingly good’ when special cases
were applied.
During both in testing phase in September and in the final
evaluation, the subjects entered special cases that we had not
anticipated, modifying KANAL’s behavior in novel ways. For
example, the action model had a flaw that led to a certain unit
strength being required to seize unoccupied terrain. The subjects
created special cases that effectively corrected this flaw.

5. DISCUSSION

The current action editor demonstrates how a graphical approach
can be used to allow users to modify the knowledge about actions
used for plan checking in a broad plan authoring tool such as
KANAL. There are several directions to more fully support users
in managing action knowledge with this approach. At the
moment, users can specify property and object information about
the actions in order to change KANAL’s behavior. We plan to
support modifying preconditions and effects directly within the
editor, either through a table or graphically. The same techniques
will be used to enrich the information that can be used for the
‘use-when’ information that triggers an action special case.
The approach can also be extended to provide control information
for both plan generation and plan checking, by authoring rules
that determine when to choose a particular action in a plan.
Extending KANAL to handle limited amounts of plan generation
as well as the current plan checking would allow the user to
specify goals or abstract steps at certain points in the plan for
KANAL to flesh out. This would significantly increase KANAL’s
usefulness as an intelligent aid to a human planner, but to do this
we need to expose more sophisticated information about actions
than is currently done, to include information about the plan
generation process and give the user some control over it. For
example, the plan generator may need to know (1) plausible ways
to generate values for action roles that are not specified in a goal
or abstract step, (2) preferred ways to expand an abstract step and
(3) preference information over alternative plans, among other
things. The way that this kind of information is typically
represented in AI planners would require users to have a detailed
understanding of the planning algorithm in order to bring about a
desired change in the planner’s behavior. An interesting research
goal will be to make this information accessible to end users
through a combination of representation and user interface
techniques in a similar fashion to the action special cases
approach described here.
We are also investigating approaches for developing interactive
acquisition dialogue where the system can provide help in
deciding when, what, how and how well to build plans. This may
be done by formulating acquisition goals and acquisition
strategies over the current state of the plan that is being built. In
developing acquisition goals and strategies, we are drawing ideas
from tutorial dialogues and principles used in intelligent tutoring
systems in order to make interactive acquisition interfaces as a
proactive learner [14].

6. ACKNOWLEDGMENTS

We would like to thank Ken Murray for his help in building the
graphical editor for entering special cases. Amit Agarwal and
Varun Ratnakar have re-written the KANAL GUI code in order to
provide a new look for KANAL. We thank Bruce Porter and Ken
Barker at University of Texas at Austin who provided background
knowledge needed for KANAL.
We would like to thank Yolanda Gil for her insightful comments
on KANAL and the action editor. We also thank SRI team
members including Vinay Chaudhri, Tomas Uribe, Peter Clark

and Sunil Mishra for their support. This research was funded by
the DARPA Rapid Knowledge Formation (RKF) program with
subcontract number 34-000-145 to SRI International under
contract number N66001-00-C-8018.

7. REFERENCES

[1] Barker, K., Clark, P. and Porter, B., A Library of
Generic Concepts for Composing Knowledge Bases.
Proceedings of the First International Conference on
Knowledge Capture (K-CAP-2001), pp. 14-21, 2001.

[2] Blythe, J., Kim, J., Ramachandran, S. and Gil, Y., An
Integrated Environment for Knowledge Acquisition.
Proceedings of International Conference on Intelligent
User Interfaces (IUI-2001), pp.13-20, 2001.

[3] Blythe, J., Integrating Expectations to Support End
Users to Acquire Procedural Knowledge. Proceedings
of the International Joint Conference on Artificial
Intelligence (IJCAI-2001), pp.943-952, 2001.

[4] Blythe, J.,SADL: Shaken Action Description
Language, http://www.isi.edu/expect/rkf/sadl.html.

[5] Chien, S., Static and completion analysis for
knowledge acquisition, validation and maintenance of
planning knowledge bases. In International Journal of
Human-Computer Studies, 48, pp. 499-519, 1998.

[6] Clark, P. and Porter, B., The knowledge machine. In
http://www.cs.utexas.edu/users/mfkb/km.html.

[7] Clark, P., Thompson, J., Barker, K., Porter, B.,
Chaudhri, V., Rodriguez, A., Thomere, J., Mishra, S.,
Gil, Y., Hayes, P. and Reichherzer, T., Knowledge
Entry as the Graphical Assembly of Components.
Proceedings of the First International Conference on
Knowledge Capture (K-Cap-2001), pp. 22-29, 2001.

[8] Cypher, A. Watch what I do: Programming by
demonstration. Allen Cypher, Ed. MIT press, 1993.

[9] Desimone, R. and Agosta, J., Oil Spill Response
Simulation: the Application of Artificial Intelligence
Planning Technology, Simulation Multiconference,
San Diego, 1994.

[10] Erol, K., Hendler, J., Nau, D., and Tsuneto, R., A
Critical Look at Critics in HTN Planning. Proceedings
of the 1995 International Joint Conference on
Artificial Intelligence (IJCAI-95), pp. 1592-1598,
1995.

[11] Ghallab, M., Howe, A., Knoblock, C., McDermott,
D., Ram, A., Veloso, M., Weld, D. and Wilkins, D.,
PDDL-the Planning Domain Definition Language,
Technical report TR-98-003, Yale Center for
Computational Vision and Control, October 1998.

[12] Kim, J. and Gil, Y., User Studies of an
Interdependency-Based Interface for Acquiring
Problem-Solving Knowledge. Proceedings of the
Intelligent User Interface Conference (IUI-2000), 165-
168, 2000.

[13] Kim, J. and Gil, Y., KANAL: Knowledge ANALysis
on Process Models, In Proceedings of the Seventeenth
International Joint Conference on Artificial
Intelligence (IJCAI-2001), pp.935-942, 2001.

[14] Kim, J. and Gil, Y., Deriving Acquisition Principles
from Tutoring Principles, Proceedings of the
Intelligent Tutoring Systems Conference (ITS-2002),
pp.661-670, 2002.

[15] Long, D. and Fox, M. “Automatic synthesis of design
types in planning”, In Proceedings of the Conference
on Artificial Intelligence Planning Systems, 2000
(AIPS-2000), pp. 196-205, 2000.

[16] Mitchell, T., Mahadevan, S. and Steinberg, L., LEAP:
A learning apprentice for VLSI design. Proceedings of
the 9th International Joint Conference on Artificial
Intelligence (IJCAI-85), pp. 574-580, 1985.

[17] Myers, K., Strategic advice for hierarchical planners.
In proceedings of the international conference on
knowledge representation and Reasoning, 1996 (KR-
96), pp. 112-123, 1996.

[18] Pane, J., Ratanamahatana, C. and Myers, B. “Studying
the language and structure in non-Programmer’s
solution to programming problems”, International
Journal of Human-Computer Studies, vol. 54, no. 2,
February 2001, pp. 237-264, 2001.

[19] Simpson, R. McCluskey, T., Long, D. and Fox, M.,
“Generic types as design patterns for planning domain
specification”, 2002.

[20] Simpson, R., McCluskey T., Zhao W., Aylett, R. and
Doniat, C., An Integrated Graphical Tool to support
Knowledge Engineering in AI Planning. Technical
Report - University of Huddersfield 2001.

